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Transcription and  translation in  
prokaryote and eukaryote 



Transcription in prokaryote  
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-k denotes kth base before transcription start, +k denotes kth transcribed base 



Issues in microbial gene finding 

•  Microbial genome tends to be gene reach 
(80%-90% of the sequence is coding) 

•  Major problem – which of two or more overlapping 
reading frames contains a gene (assumption – only 
one does) 

•  The most reliable method – homology searches 
(e.g. using BLAST and/or FASTA) 

•  Major problem – finding genes without known 
homologue cannot be based on such searches. 



Method 1: Homology search for genes 

•  Translate the sequence in all six reading 
frames (3  forward and three reverse) and do 
a similarity search against the protein 
databanks. (BLASTX) 

•  Possible false positives - pseudogenes 



Recognition of gene related signals 

•  Promoter side: bacteria TATAAT – Pribnow box at about 
–10; eukaryotes – TATA box at about –25. 

•  Termination: Could be done with or without help of the 
“rho” protein (rho dependent termination and rho 
independent termination). For rho-independent termination 
an inverted repeat sequence is required (to facilitate 
formation of a hairpin) .  

•  Other signal recognition –e.g  binding motives  
•  Recognition method for such signals – motif search 



Signal recognition for TATAAT 
Recall positional weight matrix 

position 1 2 3 4 5 6 
A 2 95 26 59 51 1 
C 9 2 14 13 20 3 
G 10 1 16 15 13 0 
T 79 3 44 13 17 96 

fA – expected frequency of A in genome 
 f Ai,i – expected frequency of A in ith position of Pribnow box 
 log-likelihood ratio: 

 log (  
P(S| S is the box) 

 P(S| random sequence) =log ( Πif Aii 

Πif A 
) = Σ log ( f Aii 

f A ) ) 



Method 2: Finding long ORFs 

TTATAAACATGCAAAATCCTCACTTATCAACAAAATGAACAATGTTTTAACAAAGTTTTG 
AACAACAAAACCACATAAACTTCCCTCGAAAAACAAAGTTTTAAACAGTTTCCACACCCC 
CTAAAGAAGAAGAGAATATTATGTATAAATATAACAATATATATTTAGGACCTGTGGAAA 
CTGTTGAAAGGATCTGAGAAATGAGTTCTTTAACACTAAGTAGACGTCCTAGAAGAAACC 
GAAAGACAGCAGCTATAAGAGATTTGTTGGCCGAAACTCACTTAAGCCCAAAAGATCTCA 
TAGCACCATTCTTTGTGAAGTATGGAAATAACATAAAGGAAGAGATCCCGAGTCTTCCTG 
GAGTGTTCCGATGGAGTTTGGATTTGCTATTAAAGGAAATAGAGCGTTTGTGTACCTACG 
GGTTACGAGCTGTAATGCTGTTTCCCATTATTCCTGATGATCTTAAAGATGCTTACGGTT 
CTTACTCCTCAAATCCTAAAAACATCTTATGTCATAGCATTCATGAAATAAAAAACGCAT 
TTCCTCACCTATGTCTGATTAGTGATATAGCTTTAGATCCTTATACGACACACGGTCATG 
ATGGGATTTTCCTTAATGGAGAGGTCCTTAATGATGAAAGTGTTAGAATTTTTGGAAATA 

Open Reading Frame (ORF) is a sequence of codons 
which starts with start codon, ends with an end codon 
and has no end codons in-between. 

Searching for ORFs – consider all 6 possible 
reading frames: 3 forward and 3 reverse 

Does the ORF contain a gene ? 
1.  Must be long enough (roughly 300 bp or more) 
2.  Should have average amino-acid composition specific for a 

given organism. 
3.  Should have codon use specific for the given organism. 
Motivation: Log enough sequence that does not code for a is 

expected to contain a stop codon 



For a long enough ORF we can check 
codon composition 

 codon 
position 

A C T G 

1 28% 33% 18% 21% 

2 32% 16% 21% 32% 

3 33% 15% 14% 38% 

 frequency 
in genome 

31% 18% 19% 31% 

Genes tends to have codon 
composition characteristic 
for a given organism.  

P(x|in coding) 
P(x|random) 

=  

Π  
P(Ai at ith position) 
P(Ai in the sequence) i 

Score of AAAGAT: 

.28*.32*.33*.21*.32*.14 

.31*.31*.31*.31*.31*.19 
Statistics collected 
from known genes 



More sophisticated  method (Krogh) 

P(x|in coding frame) 
P(x|random) 

Table from ://www.stat.berkeley.edu/users/terry/Classes/s260.2000/ 

Score of AAAGAT: 
 
.035*.032 
.013*.015 

= Π  
P(abc| abc is a codon) 
P(abc| abc is random ) i 

Let pabc = P(abc| abc is a codon) 

 Collect statistics about triples of nuclotides and for each triple x compute 



Method 3: HMM for prokaryotic genes 

Position 1 Position 3 Position 2 

Non-Coding Region 

1 1 

p 

1-p 

q 

1-q 

To find coding regions 
 use Viterbi algorithm. 
Why? 



A more general HMM for prokaryotic 
genes 

 

 these are usually HMM 
www.stat.berkeley.edu/users/terry/Classes/s260.2000/ 

 



HMM-based Gene finding programs 
for microbial genes 

•  GenMark- [Borodovsky, Mcinnich – 1993,  
Comp. Chem., 17, 123-133] 5th order HMM 
(requires estimating 45+1 = 4096 probabilities) 

•  GLIMMER[Salzberg, Delcher, Kasif,White 1998, 
Nucleic Acids Research, Vol 26, 2 55408] – 
Interpolated Markov Model (IMM) – method that 
avoids some of the problems related to insufficient 
data 



Where the training data comes from 

•  Homology to known genes 
•  EST data 
•  Long ORF’s 



 kth order Markov Models 
•  Probability of each event depends on k 

previous events: 
                 a(x|x1…xk) 
•   It requires k+1 dimensional array for 

transition probabilities is needed. If the states 
are A,C,G,T total size is 4k+1 

•  In practice, these probabilities come from 
statistics and large k require lots of data. 



Main idea behind GenMark 

•  Move a window of size 6 trough a known 
gene and collect statistics for transition 
matrix of dimension 6. 

•  From collected data compute probability of a 
given symbol (blue) providing that the it is 
preceded by given 5 symbols (pink) 



Main idea behind Glimmer  
•  Frequently there is not enough data to support k-th 

order model in general, but but there may be some (k
+1)-mers that occur frequently enough to be good 
predictors. 

•  In general, one would like to use highest order model 
•  Only models that are supported by sufficient data are 

helpful.  
•  Idea – use a combination of probabilities coming from 

models of various order with weights that depends on 
an estimation of the “quality” of the model (checked 
by the program)  
–  is there enough data to support model of given order? 
–   is there an advantage in moving to higher order model? 



The Glimmer Program: 

•  Part 1: Given training set build Markov model 
•  Part 2: Identify putative genes in entire genome: 

–  Identify all orfs longer than a threshold 
–  Score each orf in each reading frame. Identify orfs with 

score above a threshold.  
–  Examine orfs selected above for overlaps 
–  Score overlapping regions in each frame separately to 

see which frame score the highest. Chose best gene 
candidate base on putative gene length, score of the 
overlap, and other information. 



Comparison 



Gene structure in eukaryotes  
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Some statistics 
•  On average, vertebrate gene is about 30KB long 
•  Coding region takes about 1KB 
•  Exon sizes can vary from double digit numbers to 

kilo-bases 
•  An average 5’ UTR is about 750 bp 
•  An average 3’UTR is about 450 bp but both can 

be much longer. 



Methods 
•  Homology searches 
•  Dynamic programming 
•  HMM 
•  Generalized HMM 
•  Decision trees 
•  Computational linguistic 
•  Neural networks (like HMM, a machine 

learning method) 
•  ….. 



Homology searching 

•  By homology methods we can identify 
putative exons 

•  We need to align protein to a gene. But we 
need alignment methods that account for 
spliced introns – “spliced alignment” 



Exon chaining problem 

•  Given: a set  of putative exons such each 
exon has associated some weight  

•  Goal: Find the maximum weight non-
overlapping sequence of exons  

Information about exons may come from local alignment or 
BLAST searches and the weight may correspond to the 
score. It could come also from any exon prediction method 



Form Jones and Pevzner book 



erval 

Form Jones and Pevzner book 



Spliced alignment 

Method: Similar to chaining  but you do “in parallel” two things: 
Chaining the interval and sequence alignment within each interval 

Form Jones and Pevzner book 



Dynamic programming 
GenPareser – Snyder and Strome 1993; in hybrid programs 
FGENEH– Solovev et al 1995, MORGAN (Salzberg at al.) 

•  Let i, j positions in the sequence. Assume following scoring 
functions: 
–  Intragenic(i,j) ! can have two special subclasses – initial non-

coding region and final non-coding regions 
–  FirstExon(i,j) (must have start codon) 
–  Exon(i,j) 
–  Intron(i,j) 
–  LastExon(i,j) (must end with end codon) 
–  SingleExom(i,j) (must have both start and end codons) 

•  We assume, given a DNA sequence X we can score it as a 
possible candidate for any of the above regions 



Parsing a gene – assigning optimal 
partition into block types 

Let t be the type of block:  
           t = intron, first exon, middle exon,… 
St(i,j) the score of the sequence form i to j assuming the region t. 
 
D[t,n] = score of the optimal partition of a prefix of X (first n letters ) 
into blocks under assumption that last block of type t. 
 
D[t,n] = max i<n,t’(D[t’, i]+St(i+1,n)) 
the maximum is taken over all possible  t’ of preceding blocks and 
all possible starting points i of the last block 

n 
intron exon 

i 

t’ = exon t=intron 
….. 

Cost O(n2 |t|) 



Dynamic programming table D 

intron 
exon 
    . 
    . 
    . t 

sequence  The best score of the prefix ending at position i 
assuming position I belongs to an exon 

Max is taken 
over gray 
region 

i n 

D[exon,n] 

D[t,n] = max i<n,t’(D[t’, i]+St(i+1,n)) 
 Exon score of segment  

from  i+1 to n 

 block type 

Max taken over the 
gray area 



Computing scoring function St(i,j) 
•  Collect statistics based on known genes (the 

composition of introns and exons, signal correlated 
with various blocks etc) 

•  For each nucleotide N, and each block type t 
(t=intron, exon,…), and position i in the block 
assign score of N belonging to the block t in a given 
position i.  

•  Possible scores:  
–  log of probability (GeneParser) 
–  HMM (Veil) 
–  Decision tree model score (Veil) 

 



E1’ I1’ 

Frame shift problem 

As described the algorithm does not ensure frame 
consistency of frames within exons. 

E2 I1 E1 

E2 

The score for E2 depends on what was the frame of E1’ 
When executing dynamic programming algorithm the 
decision which E1 I1 or E1’I1’ is better depends on frame 
for E2. 

For each location n we need to keep separate score for each frame 



GeneParser 

•  Dynamic programming 
•  Authors:Snyder, E. E., Stormo, G. D. 

(1995) Identification of Coding Regions in 
Genomic DNA. J. Mol. Biol. 248: 1-18.  

•  http://beagle.colorado.edu/~eesnyder/
GeneParser.html  



VAIL – a HMM based system 

Henderson, Sazberg, Fasman Journal of 
Computational Biology, 4:2 (1997), 127-141  

http://www.tigr.org/~salzberg/veil.html 
Basic idea: 
•  Design a number of separate HMM models that 

capture properties of various regions (e.g. intron, 
exon) 

•  Train them separately. 



Combined Model 



Exon Model 



Intron Model 



Splice side models 
There are statistics for consensus for donor and acceptor sides 
length (9 and 15 respectively). HMM corresponds to the 
consensus profile. 

Donor side exon 
boundary: 3-4 
Acceptor  
side – exon 
boundary 14-15 



Training and parsing methods: 

•  Training: Expectation Maximization (EM) 
•  Parsing – Viterbi algorithm 



GenScan program 

•  Uses so called generalized HMM where states generate whole 
sequences rather than single letters. 
•  States- correspond to different functional units of a genome 
(promoter region, intron, exon,….) 
•  States for introns and exons are subdivided according to 
“phase” three frames. 
•  There are two symmetric sub modules for forward and 
backward strands. 

Performance: 80% exon detecting (but if a gene has more than one 
exon probability of detection decrease rapidly. 
 



Generalized HMM 

exon intron p 

1-p 

1-q 

q 

One thing that is not quite right with this HMM is that it models intron/exon 
length as if it had geometrical distribution. This is incorrect: 
- very short exons are rear (spliceosme has hard time dealing with them) 
- very long exons are rear too. 
Generalized HMM addresses this problem as follows: 
- At each state, rather then outputting a single symbol it outputs of  a 
string of finite length 
- the length of the output string string is randomly chosen with 
distribution that depends on state. 



GENSCAN 

Burge,Karlin, 1997 


